MARCH 2018 POTENTIOMETRIC MAP OF THE MIDDLE TRINITY AQUIFER, CENTRAL TEXAS
Ron Fieseler (standing) and Brian Hunt measuring a water level at Armosky Farms in Blanco County.

Disclaimer

All of the information provided in this report is believed to be accurate and reliable; however, the Barton Springs/Edwards Aquifer Conservation District and the report’s authors assume no liability for any errors or for the use of the information provided.

Cover. March 2018 potentiometric map of the Middle Trinity Aquifer, central Texas.
MARCH 2018 POTENTIOMETRIC MAP OF THE MIDDLE TRINITY AQUIFER, CENTRAL TEXAS

Brian B. Hunt, P.G., Brian A. Smith, Ph.D., P.G., Robin Gary, and Justin Camp
Barton Springs/Edwards Aquifer Conservation District

A COLLABORATIVE REPORT WITH:

Marcus O. Gary, Ph.D., P.G.
Edwards Aquifer Authority

Jeffery Watson, P.G.
Hays Trinity Groundwater Conservation District

Ronald G. Fieseler, P.G.
Blanco-Pedernales Groundwater Conservation District

Paul Tybor, P.G.
Hill Country Underground Water Conservation District

Doug Wierman, P.G.,
Texas State, Meadows Institute
MARCH 2018 POTENTIOMETRIC MAP OF THE MIDDLE TRINITY AQUIFER, CENTRAL TEXAS

BSEACD General Manager
Alicia Reinmund-Martinez

BSEACD Board of Directors
Mary Stone
Precinct 1

Blayne Stansberry, President
Precinct 2

Blake Dorsett, Secretary
Precinct 3

Dr. Robert D. Larsen
Precinct 4

Craig Smith, Vice President
Precinct 5

BSEACD Report of Investigations 2019-0109
January 2019

Barton Springs/Edwards Aquifer Conservation District
1124 Regal Row
Austin, Texas
Contents
INTRODUCTION .. 1
BACKGROUND .. 1
 Hydrogeologic Setting ... 1
 Previous Work ... 2
 Hydrologic Conditions ... 2
METHODS AND DATA .. 8
 Data Compilation, Validation, and Quality Assurance ... 8
 Contouring and Mapping ... 8
 Datums and Coordinates .. 8
RESULTS ... 9
DISCUSSION .. 9
 Hydrologic Boundaries .. 13
 Future Work ... 13
CONCLUSIONS ... 14
ACKNOWLEDGMENTS .. 14
REFERENCES ... 14
APPENDICES .. 16
 Appendix 1: Middle Trinity Potentiometric Map ... 17
 Appendix 2: Middle Trinity 2018 Potentiometric Data ... 18
 Appendix 3: 2009 Middle Trinity Potentiometric Data (from Hunt et al., 2010) 27
 Appendix 4: Middle Trinity Springs (from TWDB groundwater database) 28

FIGURES
Figure 1. Geologic map of the study area. Modified from Hunt et al., 2017a.

Figure 2. Stratigraphic and hydrostratigraphic column. From Hunt et al., 2017a.

Figure 3. Geologic and structural map. From Hunt et al., 2017a.

Figure 4. Schematic conceptual model of the Middle Trinity Aquifer.

Figure 5. Drought map produced by the US Drought Monitor showing conditions during the synoptic event in 2009 vs 2018.

Figure 6. Hydrograph of the USGS flow data from the Blanco River at Wimberley and the Henly Middle Trinity Monitor well (Figure 1).

Figure 7. Potentiometric map of the Middle Trinity Aquifer.

Figure 8. A comparison of potentiometric maps from 2018 (top; this study) and 2009(bottom; after Hunt et al., 2010).

Figure 9. Colored structure contour map of the top of the Cow Creek Formation with mapped faults (white), other anticline features (dashed) compared to the potentiometric surface (black lines).
MARCH 2018 POTENTIOMETRIC MAP OF THE MIDDLE TRINITY AQUIFER, CENTRAL TEXAS

INTRODUCTION

The Middle Trinity Aquifer is the primary groundwater resource for the central and western portions of Hays County. Groundwater levels and potentiometric surface maps provide critical information about the hydrologic relationships of recharge, discharge, and storage within an aquifer, and the direction of groundwater flow.

This report provides a potentiometric map of the Middle Trinity Aquifer for March 2018 and documents the data used to generate the map. The purpose of the report is to provide potentiometric data for future hydrogeologic investigations and evaluations of water resources. The potentiometric map and data will be useful for computer modeling, sustainable yield determinations, aquifer characterization, and resource protection.

BACKGROUND

Hydrogeologic Setting

The study area is primarily Hays County with portions of Travis, Comal, and Blanco counties spanning the Texas Hill Country (HC) and the Balcones Fault Zone (Escarpment) physiographic provinces characterized by faulting (Figure 1). A detailed description of the background hydrogeology is beyond the scope of this report and the reader is referred to Wierman et al. (2010); Hunt et al. (2017), and Smith et al. (2018) for hydrogeologic background information.

The data collected in this report is from wells and springs of the Middle Trinity Aquifer, which is composed of Lower Cretaceous carbonate units (Figure 2). The Middle Trinity Aquifer is composed of, from stratigraphically highest to lowest, the Lower Glen Rose, Hensel, and Cow Creek formations. The Hammett Shale is a regional confining unit that underlies the Middle Trinity Aquifer and separates it from the underlying Lower Trinity Aquifer. The lower Trinity Aquifer is composed of the Sligo and Gosston formations.

Overlying the Middle Trinity Aquifer is the Upper Glen Rose formation that is also considered the Upper Trinity Aquifer. Argillaceous and evaporite-rich sediments between the Middle and Upper Trinity aquifers provide hydrologic isolation between these two systems. Stratigraphically above the Upper Trinity Aquifer is the Edwards Aquifer and associated units, which are in turn overlain and confined by Upper Cretaceous limestones and clays (Figure 2). Recent studies have demonstrated that the upper-most 100-150 ft of the Upper Glen Rose is in hydrologic communication with the Edwards Aquifer in the Balcones Fault Zone (Wong et al., 2014).

Figure 3 shows the structure contour of the top of the Cow Creek formation throughout the study area and is representative of the structural influence on the Middle Trinity Aquifer as a whole. The units dip to the east in most of Hays and Travis Counties, while the units dip more to the southeast in Comal and Kendall Counties. This general change in structural dip could be the result of the influence of the San Marcos Arch.

In the eastern portion of the study area the Balcones Fault Zone (BFZ) dramatically changes the structural gradient and the dip direction in some cases. The en-echelon faulting produces relay-ramp structures that provide lateral continuity of the geologic units from the HC into the BFZ (Figure 3).
Accordingly, the Middle Trinity Aquifer system in this area can be characterized as two interconnected aquifer zones: 1) the Hill Country (HC) Middle Trinity to the west, and 2) the Balcones Fault Zone (BFZ) Middle Trinity to the east (Hunt et al., 2017b).

The HC Middle Trinity Aquifer units are variably exposed and is characterized by losing and gaining streams, springs, and karst features. Geochemistry varies from fresh to locally brackish (> 1000 mg/L TDS) with matrix, fracture, and karstic porosity and permeability possible. Groundwater ages vary from modern or young (tritium present, 50-100% modern carbon) to old (no tritium; <50% modern carbon) (Hunt et al., 2017b). Relay-ramp structures provide lateral geologic and hydrologic continuity from the HC Middle Trinity into the BFZ Middle Trinity (Hunt et al., 2015). The BFZ Middle Trinity is deeply confined and dominated by matrix and fracture porosity and permeability. Geochemistry is commonly brackish and dominated by evaporite mineralogy and older groundwater. The natural discharge areas from this system are unknown (Hunt et al., 2017b; Smith et al., 2018). Figure 4 presents a schematic conceptual model of the Middle Trinity Aquifer in the study area.

Previous Work

Very few regional synoptic Middle Trinity Aquifer potentiometric maps exist in the literature for the study area. A potentiometric map representing conditions during 1975 was produced by Mace et al., 2000 for the purposes of model calibration. Bush et al. (1993) published a regional potentiometric map. In March 2009 a regional synoptic water-level map of the Middle Trinity was produced by Hunt et al., 2010. The 2009 synoptic potentiometric map was very similar to the 1975 map in the overall geometry of the contours and gradient. A map by Watson et al., 2014 produced a potentiometric map around the Jacob’s Well area in central Hays County. That map provides more detail around JWS and the area that transitions from the HC to the BFZ Middle Trinity Aquifer.

Hydrologic Conditions

This study occurred as the region was experiencing a moderate (meteorological) drought as defined by the US Drought Monitor (Figures 5 and 6). However, the groundwater conservation districts of central Texas were in non-drought status during this study. This is in contrast to the conditions during the previous 2009 synoptic map (Hunt et al., 2010) when the area was under “extreme” to “exceptional” (meteorological) drought according to the U.S. Drought Monitor (Figures 5 and 6).
Figure 1. Geologic map of the study area. Modified from Hunt et al., 2017a.
Figure 2. Stratigraphic and hydrostratigraphic column. From Hunt et al., 2017a.
Figure 3. Geologic and structural map. From Hunt et al., 2017a. Structure data and contours are modified from Wierman et al., 2010 with additional data from Al Broun (unpublished data).
Figure 4. Schematic conceptual model of the Middle Trinity Aquifer. Modified from Hunt et al., 2017a.
Figure 5. Drought map produced by the US Drought Monitor showing conditions during the synoptic event in 2009 vs 2018.

Figure 6. Hydrograph of the USGS flow data from the Blanco River at Wimberley and the Henly Middle Trinity Monitor well (Figure 1). The general time periods for the synoptic of 2009 (Hunt et al, 2010) and this study area shown.
METHODS AND DATA

Water-level measurements were collected using either manual measurements or less frequently from automated recorders. Manual measurements were most often made with a calibrated electric tape (e-line) or, less commonly with a sonic meter. Manual e-line measurements are generally accurate to within ±0.01 feet, and sonic measurements are less accurate and precise with an error of about 2 ft.

Data sources include field measurements by the authors and contributors, the Texas Water Development Board automated recorders, elevations of known springs, and some data from previous studies (Hunt et al., 2010; Watson et al., 2014).

Data Compilation, Validation, and Quality Assurance

Data were compiled into a spreadsheet and mapped using GIS software (ESRI ArcMap). Water level elevations were contoured and compared to the historic published potentiometric maps of Hunt et al., 2010 and Watson et al., 2014. Comparison to historic maps allowed general quality assurance and control on the 2018 data. All data were carefully reviewed and were omitted from the compilation if suspected of questionable well completion, significant influence from pumping, or other anomalous or non-representative conditions.

Contouring and Mapping

All water-level data were gridded using a kriging interpolation (linear model) algorithm within Goldenware’s Surfer® software. Potentiometric contours were then generated from the grid. Computer-generated contours were then manually reinterpreted and manipulated to account for qualitative data and information such as hydrogeologic boundaries, published reports, and experience of the authors.

Structure data was derived from Wierman et al., (2010) and supplemental data from Al Broun (unpublished). Figure 3 represents hand-drawn contours from Al Broun published in Wierman et al., 2010 and modified by Hunt et al., 2017a. Additional structure contours were generated from gridded data using a kriging interpolation (linear model) algorithm within Goldenware’s Surfer® software.

Datums and Coordinates

Horizontal coordinates in the database are in latitude and longitude. Many of the sites had locations that were previously recorded by the TWDB or within other published sources (Hunt et al., 2010; Waston et al., 2014). New sites and verification of existing sites was done using Google Earth. Horizontal datums in GIS are in North American Datum 1983 (NAD83). Horizontal accuracy of the locations is likely within about 20 feet, or better.

Water-level measurements are made in reference to a measurement point (MP) at the well head. Commonly, the MP corresponds to the top of casing (TOC). The MP or TOC measurement is subtracted from the depth-to-water measurement to reflect a depth from the land surface datum (LSD). LSD is generally defined as the top of the concrete slab around the casing, or from ground level if no slab exists. All depth to water measurements are referenced to LSD (in feet). Elevations for LSDs are in feet above mean sea level and were generally obtained from existing databases (TWDB), published reports (Hunt et al., 2010; Waston et al., 2014), or Google Earth for new sites. Vertical datums are either National Geodetic Vertical Datum 1929 (NAVD29) or National Geodetic Vertical Datum 1988 (NAVD88). Each elevation was verified in Google Earth. The accuracy of the LSD of a well is the largest source of error for the elevation data in this report and is likely less than 10 feet.
RESULTS

Figure 7 is a potentiometric map of the Middle Trinity Aquifer. A larger version (11x17 inch) of the map is provided in Appendix 1. Appendix 2 contains the well-control data used to produce the contour map. Appendix 3 provides the supplemental data from 2009 (Hunt et al., 2010) used to qualitatively constrain the contours in areas with sparse data. Appendix 4 contains the locations of some Middle Trinity Springs in the study area. Figure 8 combines the March 2009 potentiometric map of the Middle Trinity Aquifer for direct comparison. Figure 9 shows the structure contours of the top of the Cow Creek with other structures compared to the 2018 potentiometric map.

DISCUSSION

The potentiometric map can help characterize flow characteristic and hydrologic boundaries. Some observations about flow and boundaries are discussed below.

Groundwater Flow

Previous potentiometric maps (Mace et al., 2000; Hunt et al., 2009; Watson et al., 2014) are remarkably similar to the 2018 potentiometric map provided in this report (Figure 8). Groundwater flow within the Middle Trinity Aquifer is generally west to east from Gillespie, Blanco, and into Hays counties (Figure 7). Water-level elevations in central Hays County are relatively flat in the area between Onion Creek and Cypress Creek—two surface streams that have some portions that have losing reaches. North of Onion Creek in Hays and Travis Counties, the heads have a steep gradient to the northeast. Thus, groundwater flow in the Middle Trinity in Travis County is predominately to the northeast and appears derived mostly from Hays County. Groundwater contours in Travis County suggest that the Mount Bonnell Fault may play a role as barrier to eastward flow, as noted by Mace et al., (2000).

A significant trough in the potentiometric surface is located upgradient from Jacob’s Well Spring (JWS) in Cypress Creek. The trough is related to the Jacob’s Well conduit that is mapped in that area and is a feature common within the karstic Edward Aquifer (Hunt et al., 2007).

Groundwater flow south and east of the Cypress Creek is to the east-southeast past the major springs and into the BFZ. Gradients steepen southeast of Cypress Creek into the BFZ, then flatten out on the eastern edge of the study area in an area corresponding to the confined zone of the Edwards Aquifer.

The overall flow direction and potentiometric gradients appear to follow the structure contour gradients that reflect depositional dip and faulting or anticlinal structures (Figure 9). For example, the flat gradient within central Hays appears to occur coincident with a broad arch that is bound on the south by a more localized anticlinal structure. The exception is the flow in northern-most Hays and western-most Travis Counties that has flow normal to the structural dip.
Figure 7. Potentiometric map of the Middle Trinity Aquifer.
Figure 8. A comparison of potentiometric maps from 2018 (top; this study) and 2009 (bottom; after Hunt et al., 2010).
Figure 9. Colored structure contour map of the top of the Cow Creek Formation with mapped faults (white), other anticline features (dashed) compared to the potentiometric surface (black lines). Structure contours were gridded in Surfer with no manual re-interpretation. Faults are from the Geologic Atlas of Texas modified by Wierman et al., 2010. Anticline and monocline structures from Wierman et al., 2010. San Marcos Arch axis is from Rose, 1972.
Hydrologic Boundaries
A prominent potentiometric ridge exists along the Blanco-Kendall County line that may extend over Canyon Lake. This ridge appears consistent within previous published maps (Mace et al., 2000; Hunt et al., 2010). The hydrologic ridge appears to be related to the underlying structural ridge, which may also be related to the broad crest of the San Marcos Arch (Figure 9).

Faulting appears to influence the gradients and perhaps direction of flow. The Mount Bonnell/Tom Creek Fault may act as a barrier to eastward flow from about Bear Creek and FM 1826 in Hays County to north of the Colorado River. This may be related to the larger degree of throw along this portion of the fault zone.

Southwest of Onion Creek the faults do not appear to act as barriers to flow as the potentiometric contours continue to the east. This may be related to the relay-ramp structures discussed in Hunt et al., (2015).

The Pedernales river is inferred to be a gaining segment, in part, from the Middle Trinity Aquifer (Figure 7). This is primarily based on the work of Bluntzer (1992), Bush et al., (1983), and Wierman et al., (2017). The Colorado River is often assumed to be a hydrologic barrier or boundary condition for numerical models (Mace et al., 2000). However, the data in this study suggest it is not a discharge boundary. Despite the Colorado River being the regional base level (lowest surface elevation), and the fact that the Lower Glen Rose is exposed within the channel of the Colorado River west of the BFZ, the heads in this study appear to be below the elevation of the river. This is based on relatively sparse data and should be revisited in future studies.

Future Work
Very little information exists about the potential influence of the Paleozoic Aquifers on the Middle Trinity. Previous studies indicate a hydrologic connection (Bluntzer, 1992; Wierman et al., 2017), but further work is needed to characterize those connections.

It is not clear why the heads north of Onion Creek and into Travis County appear depleted compared to the rest of Hays County. This could be result of pumping, changes in the lithology, or facies of the units that could result in porosity and permeability changes, or some combination of both.

The natural discharge of the eastward flow of groundwater in the BFZ Middle Trinity is unknown. It is possible that the natural discharge is into overlying units east of the BFZ. The natural discharge of the northward flow of groundwater in the HC Middle Trinity units north of the Colorado River is also unknown. One possibility is that the lower heads is part of the southern margin of a regional drawdown cone of depression from historic pumping of the Trinity Aquifer centered around McLennan County (Waco) (George et al., 2011). Further work is needed to characterize Middle Trinity heads north of the Colorado River.

Locally heads at individual well locations may not accurately reflect the average head within the Middle Trinity Aquifer at that location. There is head differential documented within the geologic units that compose the Middle Trinity Aquifer, which includes the Cow Creek, Hensel, and Lower Glen Rose. Some of the head variability depends of the well completion, geologic setting, recharge conditions, and the permeability of the Hensel separating the Cow Creek from the overlying Lower Glen Rose. For example, head data from multiport monitor wells indicates a head differential between the Lower Glen Rose and the Cow Creek of up to 40 ft (Hunt and Smith et al., 2017). To complicate the issue, despite the head separation in the area surrounding this particular multiport well, aquifer testing indicates communication between the Lower Glen Rose and Cow Creek (Hunt and Smith, 2017). In other multiport wells, head data throughout the Middle Trinity are relatively similar (Hunt et al., 2016). More work is needed to fully characterize the heads within the Middle Trinity Aquifer.
CONCLUSIONS

The March 2018 potentiometric map provides critical information to the overall flow patterns and potential boundaries for the Middle Trinity Aquifer. The data and interpretations are consistent with previous published maps. This data set should be used to help refine the conceptual model of the aquifer, numerical modeling, and highlights areas for future study.

ACKNOWLEDGMENTS

Data was collected for this study by the authors, collaborators, and a number of additional contributors including: Vanessa Escobar, Kendall Bell-Enders and Erin Swanson (BSEACD); Jessica Quintanilla (EAA); and students from a karst hydrogeology class at the University of Texas at Austin under the supervision of Dr. Marcus Gary. We would like to acknowledge and thank all the land owners and agencies that provided access to their wells for data collection.

REFERENCES

Bush, Peter W., Ardis, Ann F.; Wynn, Kirby H., 1993, Historical potentiometric surface of the Edwards-Trinity aquifer system and contiguous hydraulically connected units, west-central Texas; U.S. Geological Survey Water-Resources Investigations Report, WRI no. 92-4055; 1 map + 2 data sheets

Appendix 1: Middle Trinity Potentiometric Map
Appendix 2: Middle Trinity 2018 Potentiometric Data

<table>
<thead>
<tr>
<th>Name</th>
<th>SHN</th>
<th>Other_ID</th>
<th>Source</th>
<th>Well_depth</th>
<th>Equipment</th>
<th>Staff</th>
<th>2018_Sh</th>
<th>MP</th>
<th>2018_Sh</th>
<th>Comment_</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sankofa</td>
<td>5042057</td>
<td>BSEACD</td>
<td>Middle Trinity (Cow Creek)</td>
<td>97.74640</td>
<td>S-5 line</td>
<td>KEE</td>
<td>16-Apr-18</td>
<td>52.78</td>
<td>1.05</td>
<td>52.25</td>
<td></td>
</tr>
<tr>
<td>Cornershine</td>
<td>5042188</td>
<td>BSEACD</td>
<td>Middle Trinity (Cow Creek)</td>
<td>97.74198</td>
<td>S-5 line</td>
<td>KEE</td>
<td>16-Apr-18</td>
<td>52.15</td>
<td>2.05</td>
<td>52.15</td>
<td></td>
</tr>
<tr>
<td>Ruby Well</td>
<td>505064</td>
<td>BSEACD</td>
<td>Middle Trinity</td>
<td>97.807516</td>
<td>KS</td>
<td>E</td>
<td>06-May-18</td>
<td>141.9</td>
<td>1.5</td>
<td>513.8</td>
<td></td>
</tr>
<tr>
<td>Spillar Weedy</td>
<td>505401</td>
<td>BSEACD</td>
<td>Middle Trinity (Cow Creek)</td>
<td>97.85167</td>
<td>Woodhead</td>
<td>EBHH</td>
<td>06-May-18</td>
<td>55.64</td>
<td>2.00</td>
<td>63.30</td>
<td>Zone 1 89.01 (Lower Kcc)</td>
</tr>
<tr>
<td>Wildflower Center</td>
<td>5063024</td>
<td>BSEACD</td>
<td>Middle Trinity (Cow Creek)</td>
<td>97.86582</td>
<td>S-5 line</td>
<td>KEE</td>
<td>16-Apr-18</td>
<td>214.95</td>
<td>2.05</td>
<td>587.8</td>
<td></td>
</tr>
<tr>
<td>Aquatic To Centrifugal Plant</td>
<td>5069941</td>
<td>BSEACD</td>
<td>Middle Trinity (Cow Creek)</td>
<td>97.90482</td>
<td>S-5 line</td>
<td>KEE</td>
<td>06-May-18</td>
<td>212.65</td>
<td>2.05</td>
<td>687.8</td>
<td></td>
</tr>
<tr>
<td>Commons Feed PWS</td>
<td>5064131</td>
<td>BSEACD</td>
<td>Middle Trinity (Cow Creek)</td>
<td>97.94033</td>
<td>S-5 line</td>
<td>KEE</td>
<td>06-May-18</td>
<td>225.7</td>
<td>2.00</td>
<td>546.3</td>
<td>sonic 226.0</td>
</tr>
<tr>
<td>Audubon Creek Wilson</td>
<td>5075516</td>
<td>BSEACD</td>
<td>Middle Trinity (Cow Creek)</td>
<td>97.96225</td>
<td>S-5 line</td>
<td>KEE</td>
<td>06-May-18</td>
<td>225.7</td>
<td>2.00</td>
<td>546.3</td>
<td></td>
</tr>
<tr>
<td>Richardson Trinity</td>
<td>5075516</td>
<td>BSEACD</td>
<td>Middle Trinity (Cow Creek)</td>
<td>97.96225</td>
<td>S-5 line</td>
<td>KEE</td>
<td>06-May-18</td>
<td>225.7</td>
<td>2.00</td>
<td>546.3</td>
<td></td>
</tr>
<tr>
<td>Spillar Test Well</td>
<td>5075516</td>
<td>BSEACD</td>
<td>Middle Trinity (Cow Creek)</td>
<td>97.96225</td>
<td>S-5 line</td>
<td>KEE</td>
<td>06-May-18</td>
<td>178.46</td>
<td>1.46</td>
<td>705.56</td>
<td></td>
</tr>
<tr>
<td>Grey Rock #5</td>
<td>5075516</td>
<td>BSEACD</td>
<td>Middle Trinity (Cow Creek)</td>
<td>97.96225</td>
<td>S-5 line</td>
<td>KEE</td>
<td>06-May-18</td>
<td>245.6</td>
<td>3.00</td>
<td>697.4</td>
<td></td>
</tr>
<tr>
<td>Shuit</td>
<td>5075516</td>
<td>BSEACD</td>
<td>Middle Trinity (Cow Creek)</td>
<td>97.96225</td>
<td>S-5 line</td>
<td>KEE</td>
<td>06-May-18</td>
<td>245.6</td>
<td>3.00</td>
<td>697.4</td>
<td></td>
</tr>
<tr>
<td>KilldB - Trinity Production Well</td>
<td>5075516</td>
<td>BSEACD</td>
<td>Middle Trinity (Cow Creek)</td>
<td>97.96225</td>
<td>S-5 line</td>
<td>KEE</td>
<td>06-May-18</td>
<td>245.6</td>
<td>3.00</td>
<td>697.4</td>
<td></td>
</tr>
<tr>
<td>Baby Woodley Well</td>
<td>5075516</td>
<td>BSEACD</td>
<td>Middle Trinity (Cow Creek)</td>
<td>97.96225</td>
<td>S-5 line</td>
<td>KEE</td>
<td>06-May-18</td>
<td>245.6</td>
<td>3.00</td>
<td>697.4</td>
<td></td>
</tr>
<tr>
<td>Sky Cow Creek</td>
<td>5075516</td>
<td>BSEACD</td>
<td>Middle Trinity (Cow Creek)</td>
<td>97.96225</td>
<td>S-5 line</td>
<td>KEE</td>
<td>06-May-18</td>
<td>245.6</td>
<td>3.00</td>
<td>697.4</td>
<td></td>
</tr>
<tr>
<td>Winstead Academy</td>
<td>5080715</td>
<td>BSEACD</td>
<td>Middle Trinity (Cow Creek)</td>
<td>98.005317</td>
<td>S-5 line</td>
<td>KEE</td>
<td>06-May-18</td>
<td>206.7</td>
<td>6.7</td>
<td>700.0</td>
<td></td>
</tr>
<tr>
<td>Tarrant Co. Pat 3 Multiplet</td>
<td>5081608</td>
<td>BSEACD</td>
<td>Middle Trinity (Cow Creek)</td>
<td>98.005317</td>
<td>S-5 line</td>
<td>KEE</td>
<td>06-May-18</td>
<td>154.24</td>
<td>2.00</td>
<td>661.35</td>
<td></td>
</tr>
<tr>
<td>Nathan</td>
<td>5081608</td>
<td>BSEACD</td>
<td>Middle Trinity (Cow Creek)</td>
<td>98.005317</td>
<td>S-5 line</td>
<td>KEE</td>
<td>06-May-18</td>
<td>154.24</td>
<td>2.00</td>
<td>661.35</td>
<td></td>
</tr>
<tr>
<td>Gettys</td>
<td>5081608</td>
<td>BSEACD</td>
<td>Middle Trinity (Cow Creek)</td>
<td>98.005317</td>
<td>S-5 line</td>
<td>KEE</td>
<td>06-May-18</td>
<td>154.24</td>
<td>2.00</td>
<td>661.35</td>
<td></td>
</tr>
<tr>
<td>Ponderosa</td>
<td>5081608</td>
<td>BSEACD</td>
<td>Middle Trinity (Cow Creek)</td>
<td>98.005317</td>
<td>S-5 line</td>
<td>KEE</td>
<td>06-May-18</td>
<td>154.24</td>
<td>2.00</td>
<td>661.35</td>
<td></td>
</tr>
<tr>
<td>Rambler</td>
<td>5081608</td>
<td>BSEACD</td>
<td>Middle Trinity (Cow Creek)</td>
<td>98.005317</td>
<td>S-5 line</td>
<td>KEE</td>
<td>06-May-18</td>
<td>205.13</td>
<td>1.05</td>
<td>621.82</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>SHN</td>
<td>Other_ID</td>
<td>Source</td>
<td>Gage</td>
<td>Station</td>
<td>Date</td>
<td>Pin Code</td>
<td>Depth</td>
<td>Type</td>
<td>notes</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>------</td>
<td>-----------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Cow Creek, Fort Smith</td>
<td></td>
<td></td>
<td>JCD</td>
<td></td>
<td>WB01</td>
<td>1/1/00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSEACD</td>
<td>000006</td>
<td></td>
</tr>
<tr>
<td>Jimmy Schoenfeld</td>
<td>575061</td>
<td></td>
<td>JCD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breanna</td>
<td>575464</td>
<td>12107</td>
<td>JCD</td>
<td></td>
<td></td>
<td>10/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camp-Ros McClure</td>
<td>577667</td>
<td></td>
<td>JCD</td>
<td></td>
<td></td>
<td>10/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melida</td>
<td>575064</td>
<td></td>
<td>JCD</td>
<td></td>
<td></td>
<td>10/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DrillWolf/Midlandpark</td>
<td>575663</td>
<td></td>
<td>JCD</td>
<td></td>
<td></td>
<td>10/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Lake</td>
<td>575651</td>
<td></td>
<td>JCD</td>
<td></td>
<td></td>
<td>10/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miller</td>
<td>575068</td>
<td></td>
<td>JCD</td>
<td></td>
<td></td>
<td>10/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ochoma</td>
<td>575063</td>
<td></td>
<td>JCD</td>
<td></td>
<td></td>
<td>10/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sterling</td>
<td>575067</td>
<td></td>
<td>JCD</td>
<td></td>
<td></td>
<td>10/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunar</td>
<td>575068</td>
<td></td>
<td>JCD</td>
<td></td>
<td></td>
<td>10/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WradHH</td>
<td>231029</td>
<td></td>
<td>JCD</td>
<td></td>
<td></td>
<td>10/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paul and RandolfMerkel</td>
<td>663063</td>
<td></td>
<td>JCD</td>
<td></td>
<td></td>
<td>10/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>575619</td>
<td></td>
<td>JCD</td>
<td></td>
<td></td>
<td>10/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reddy</td>
<td>575618</td>
<td></td>
<td>JCD</td>
<td></td>
<td></td>
<td>10/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amos</td>
<td>575623</td>
<td></td>
<td>JCD</td>
<td></td>
<td></td>
<td>10/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potthast</td>
<td>123070</td>
<td></td>
<td>JCD</td>
<td></td>
<td></td>
<td>10/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWDD_Murphy</td>
<td>575065</td>
<td></td>
<td>JCD</td>
<td></td>
<td></td>
<td>10/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>County</td>
<td>575067</td>
<td></td>
<td>JCD</td>
<td></td>
<td></td>
<td>10/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>SHN</td>
<td>Other_ID</td>
<td>Source</td>
<td>Date</td>
<td>Elev</td>
<td>Surface Elevation</td>
<td>Surface Filter used</td>
<td>Aquifer</td>
<td>Overcast</td>
<td>Well_depth</td>
<td>Equipment</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----</td>
<td>----------</td>
<td>-----------------</td>
<td>------------</td>
<td>------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>---------</td>
<td>----------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Downing</td>
<td>5764602</td>
<td></td>
<td>DP0167503</td>
<td>01-07-2015</td>
<td>808</td>
<td>JQ</td>
<td></td>
<td>Middle Trinity(Cor Cook)</td>
<td></td>
<td>500</td>
<td>transducer</td>
</tr>
<tr>
<td>Tompkins Springs</td>
<td>6060402</td>
<td></td>
<td>BSEACD_RC</td>
<td>01-07-2015</td>
<td>910</td>
<td>E Line</td>
<td></td>
<td>Middle Trinity(Cor Cook)</td>
<td></td>
<td></td>
<td>transducer</td>
</tr>
<tr>
<td>DWSS Wall Hill</td>
<td>5764602</td>
<td></td>
<td>HTGCD_mozz_wells</td>
<td>01-07-2015</td>
<td>345</td>
<td>transducer</td>
<td>HTGCD</td>
<td>Middle Trinity(Cor Cook)</td>
<td></td>
<td></td>
<td>transducer</td>
</tr>
<tr>
<td>Hastings</td>
<td></td>
<td></td>
<td>BSEACD_RG</td>
<td>01-07-2015</td>
<td>975</td>
<td>E Line</td>
<td></td>
<td>JQ</td>
<td></td>
<td></td>
<td>transducer</td>
</tr>
<tr>
<td>DISBO-1 (Rig)</td>
<td>5764602</td>
<td></td>
<td>HTGCD_mozz_wells</td>
<td>01-07-2015</td>
<td>400</td>
<td>E Line</td>
<td></td>
<td>Middle Trinity(Cor Cook)</td>
<td></td>
<td></td>
<td>transducer</td>
</tr>
<tr>
<td>DISBO-1 (Rig)</td>
<td>5764602</td>
<td></td>
<td>HTGCD_mozz_wells</td>
<td>01-07-2015</td>
<td>400</td>
<td>E Line</td>
<td></td>
<td>Middle Trinity(Cor Cook)</td>
<td></td>
<td></td>
<td>transducer</td>
</tr>
<tr>
<td>Sabino Ranches</td>
<td></td>
<td></td>
<td>BSEACD_RG</td>
<td>01-07-2015</td>
<td>40</td>
<td>E Line</td>
<td></td>
<td>Middle Trinity(Cor Cook)</td>
<td></td>
<td></td>
<td>transducer</td>
</tr>
<tr>
<td>O'Neil Ranch Road</td>
<td></td>
<td></td>
<td>BSEACD_RG</td>
<td>01-07-2015</td>
<td>40</td>
<td>E Line</td>
<td></td>
<td>Middle Trinity(Cor Cook)</td>
<td></td>
<td></td>
<td>transducer</td>
</tr>
<tr>
<td>Big Hollow (Drub)</td>
<td>5764602</td>
<td></td>
<td>HTGCD_mozz_wells</td>
<td>01-07-2015</td>
<td>400</td>
<td>transducer</td>
<td>HTGCD</td>
<td>Middle Trinity(Cor Cook)</td>
<td></td>
<td></td>
<td>transducer</td>
</tr>
<tr>
<td>WC Maintenance 2</td>
<td></td>
<td></td>
<td>BSEACD_RG</td>
<td>01-07-2015</td>
<td>900</td>
<td>E Line</td>
<td></td>
<td>Middle Trinity(Cor Cook)</td>
<td></td>
<td></td>
<td>transducer</td>
</tr>
<tr>
<td>HTGCD BCPO</td>
<td></td>
<td></td>
<td>WSE</td>
<td>01-07-2015</td>
<td>900</td>
<td>E Line</td>
<td></td>
<td>Middle Trinity(Cor Cook)</td>
<td></td>
<td></td>
<td>transducer</td>
</tr>
<tr>
<td>Gleno</td>
<td></td>
<td></td>
<td>BSEACD_RG</td>
<td>01-07-2015</td>
<td>900</td>
<td>E Line</td>
<td></td>
<td>Middle Trinity(Cor Cook)</td>
<td></td>
<td></td>
<td>transducer</td>
</tr>
<tr>
<td>Waxahachie WSC</td>
<td></td>
<td></td>
<td>BSEACD_RG</td>
<td>01-07-2015</td>
<td>900</td>
<td>E Line</td>
<td></td>
<td>Middle Trinity(Cor Cook)</td>
<td></td>
<td></td>
<td>transducer</td>
</tr>
<tr>
<td>HTGCD Graham</td>
<td></td>
<td></td>
<td>BSEACD_RG</td>
<td>01-07-2015</td>
<td>900</td>
<td>E Line</td>
<td></td>
<td>Middle Trinity(Cor Cook)</td>
<td></td>
<td></td>
<td>transducer</td>
</tr>
<tr>
<td>Baker</td>
<td></td>
<td></td>
<td>BSEACD_RG</td>
<td>01-07-2015</td>
<td>900</td>
<td>E Line</td>
<td></td>
<td>Middle Trinity(Cor Cook)</td>
<td></td>
<td></td>
<td>transducer</td>
</tr>
<tr>
<td>Jacob's Well Spring</td>
<td></td>
<td></td>
<td>BSEACD_RG</td>
<td>01-07-2015</td>
<td>900</td>
<td>E Line</td>
<td></td>
<td>Middle Trinity(Cor Cook)</td>
<td></td>
<td></td>
<td>transducer</td>
</tr>
<tr>
<td>Tom's Spring</td>
<td></td>
<td></td>
<td>BSEACD_RG</td>
<td>01-07-2015</td>
<td>900</td>
<td>E Line</td>
<td></td>
<td>Middle Trinity(Cor Cook)</td>
<td></td>
<td></td>
<td>transducer</td>
</tr>
<tr>
<td>Solena</td>
<td></td>
<td></td>
<td>BSEACD_RG</td>
<td>01-07-2015</td>
<td>900</td>
<td>E Line</td>
<td></td>
<td>Middle Trinity(Cor Cook)</td>
<td></td>
<td></td>
<td>transducer</td>
</tr>
<tr>
<td>TWDB Hamilton Pool</td>
<td></td>
<td></td>
<td>BSEACD_RG</td>
<td>01-07-2015</td>
<td>900</td>
<td>E Line</td>
<td></td>
<td>Middle Trinity(Cor Cook)</td>
<td></td>
<td></td>
<td>transducer</td>
</tr>
<tr>
<td>Brazil</td>
<td></td>
<td></td>
<td>BSEACD_RG</td>
<td>01-07-2015</td>
<td>900</td>
<td>E Line</td>
<td></td>
<td>Middle Trinity(Cor Cook)</td>
<td></td>
<td></td>
<td>transducer</td>
</tr>
<tr>
<td>Jack Reeves</td>
<td>5753304</td>
<td></td>
<td>HTGCD</td>
<td>01-07-2015</td>
<td>900</td>
<td>E Line</td>
<td></td>
<td>Middle Trinity(Cor Cook)</td>
<td></td>
<td></td>
<td>transducer</td>
</tr>
</tbody>
</table>

BSEACD Report of Investigations 2019-0109

20
<table>
<thead>
<tr>
<th>Name</th>
<th>SHN</th>
<th>Other_ID</th>
<th>Source</th>
<th>Delint</th>
<th>Drilling</th>
<th>Surface_Elevation</th>
<th>Surface_250m_ave</th>
<th>Aquifer</th>
<th>Owner</th>
<th>Well_depth</th>
<th>Equipment</th>
<th>Staff</th>
<th>2018_Date</th>
<th>2018_FW</th>
<th>MP</th>
<th>2018_WL_Elev</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groves</td>
<td>5755605</td>
<td>HTGCD</td>
<td>2018 Diy trace</td>
<td>16:14:16:72</td>
<td>1021</td>
<td>Middle Trinity (Coe County)</td>
<td>UT</td>
<td>17-Apr-18</td>
<td>104.6</td>
<td>0.71</td>
<td>106.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Banks</td>
<td>575507</td>
<td>HTGCD</td>
<td>2018-01-08</td>
<td>08:15:00</td>
<td>12</td>
<td>1257.635</td>
<td>1257.635</td>
<td>Middle Trinity</td>
<td>2017</td>
<td>3</td>
<td>120.9704</td>
<td>1.4</td>
<td>124.7035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wimberley</td>
<td>575507</td>
<td>HTGCD</td>
<td>2018-01-08</td>
<td>08:15:00</td>
<td>12</td>
<td>1257.635</td>
<td>1257.635</td>
<td>Middle Trinity</td>
<td>2017</td>
<td>3</td>
<td>120.9704</td>
<td>1.4</td>
<td>124.7035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood Creek 23</td>
<td>575507</td>
<td>HTGCD</td>
<td>2018-01-08</td>
<td>08:15:00</td>
<td>12</td>
<td>1257.635</td>
<td>1257.635</td>
<td>Middle Trinity</td>
<td>2017</td>
<td>3</td>
<td>120.9704</td>
<td>1.4</td>
<td>124.7035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section 25</td>
<td>575507</td>
<td>HTGCD</td>
<td>2018-01-08</td>
<td>08:15:00</td>
<td>12</td>
<td>1257.635</td>
<td>1257.635</td>
<td>Middle Trinity</td>
<td>2017</td>
<td>3</td>
<td>120.9704</td>
<td>1.4</td>
<td>124.7035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shiloh</td>
<td>575507</td>
<td>HTGCD</td>
<td>2018-01-08</td>
<td>08:15:00</td>
<td>12</td>
<td>1257.635</td>
<td>1257.635</td>
<td>Middle Trinity</td>
<td>2017</td>
<td>3</td>
<td>120.9704</td>
<td>1.4</td>
<td>124.7035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood Creek 23</td>
<td>575507</td>
<td>HTGCD</td>
<td>2018-01-08</td>
<td>08:15:00</td>
<td>12</td>
<td>1257.635</td>
<td>1257.635</td>
<td>Middle Trinity</td>
<td>2017</td>
<td>3</td>
<td>120.9704</td>
<td>1.4</td>
<td>124.7035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procharger</td>
<td>575507</td>
<td>HTGCD</td>
<td>2018-01-08</td>
<td>08:15:00</td>
<td>12</td>
<td>1257.635</td>
<td>1257.635</td>
<td>Middle Trinity</td>
<td>2017</td>
<td>3</td>
<td>120.9704</td>
<td>1.4</td>
<td>124.7035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones</td>
<td>575507</td>
<td>HTGCD</td>
<td>2018-01-08</td>
<td>08:15:00</td>
<td>12</td>
<td>1257.635</td>
<td>1257.635</td>
<td>Middle Trinity</td>
<td>2017</td>
<td>3</td>
<td>120.9704</td>
<td>1.4</td>
<td>124.7035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austin Ranch (Highgrade) Etoned</td>
<td>575507</td>
<td>HTGCD</td>
<td>2018-01-08</td>
<td>08:15:00</td>
<td>12</td>
<td>1257.635</td>
<td>1257.635</td>
<td>Middle Trinity</td>
<td>2017</td>
<td>3</td>
<td>120.9704</td>
<td>1.4</td>
<td>124.7035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>575507</td>
<td>HTGCD</td>
<td>2018-01-08</td>
<td>08:15:00</td>
<td>12</td>
<td>1257.635</td>
<td>1257.635</td>
<td>Middle Trinity</td>
<td>2017</td>
<td>3</td>
<td>120.9704</td>
<td>1.4</td>
<td>124.7035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maquapita</td>
<td>575507</td>
<td>HTGCD</td>
<td>2018-01-08</td>
<td>08:15:00</td>
<td>12</td>
<td>1257.635</td>
<td>1257.635</td>
<td>Middle Trinity</td>
<td>2017</td>
<td>3</td>
<td>120.9704</td>
<td>1.4</td>
<td>124.7035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWDB Canyon Lake Water Service Co.</td>
<td>575507</td>
<td>HTGCD</td>
<td>2018-01-08</td>
<td>08:15:00</td>
<td>12</td>
<td>1257.635</td>
<td>1257.635</td>
<td>Middle Trinity</td>
<td>2017</td>
<td>3</td>
<td>120.9704</td>
<td>1.4</td>
<td>124.7035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loveland</td>
<td>575507</td>
<td>HTGCD</td>
<td>2018-01-08</td>
<td>08:15:00</td>
<td>12</td>
<td>1257.635</td>
<td>1257.635</td>
<td>Middle Trinity</td>
<td>2017</td>
<td>3</td>
<td>120.9704</td>
<td>1.4</td>
<td>124.7035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skier</td>
<td>575507</td>
<td>HTGCD</td>
<td>2018-01-08</td>
<td>08:15:00</td>
<td>12</td>
<td>1257.635</td>
<td>1257.635</td>
<td>Middle Trinity</td>
<td>2017</td>
<td>3</td>
<td>120.9704</td>
<td>1.4</td>
<td>124.7035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desorie</td>
<td>575507</td>
<td>HTGCD</td>
<td>2018-01-08</td>
<td>08:15:00</td>
<td>12</td>
<td>1257.635</td>
<td>1257.635</td>
<td>Middle Trinity</td>
<td>2017</td>
<td>3</td>
<td>120.9704</td>
<td>1.4</td>
<td>124.7035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roberts</td>
<td>575507</td>
<td>HTGCD</td>
<td>2018-01-08</td>
<td>08:15:00</td>
<td>12</td>
<td>1257.635</td>
<td>1257.635</td>
<td>Middle Trinity</td>
<td>2017</td>
<td>3</td>
<td>120.9704</td>
<td>1.4</td>
<td>124.7035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>SHN</td>
<td>Other ID</td>
<td>Source</td>
<td>Drilled</td>
<td>Depth</td>
<td>Surface Elevation</td>
<td>Surface_filter_note</td>
<td>Aquifer</td>
<td>Owner</td>
<td>Well_depth</td>
<td>Equipment</td>
<td>Staff</td>
<td>2018_State</td>
<td>2018_DTW</td>
<td>MP</td>
<td>2018_HS_Ele</td>
<td>Comment</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td>------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Pleasant Valley Spring</td>
<td>5763489</td>
<td></td>
<td></td>
<td>Spring</td>
<td>18.01223</td>
<td>925</td>
<td>Middle Trinity</td>
<td>Core Complect</td>
<td>UT</td>
<td>07-Apr-18</td>
<td>8</td>
<td>8</td>
<td>925</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chilie Inn Spring</td>
<td>5717082</td>
<td></td>
<td>BSEACD</td>
<td>38.203000</td>
<td>921</td>
<td></td>
<td>Middle Trinity</td>
<td>Core Complect</td>
<td>UT</td>
<td>07-Apr-18</td>
<td>8</td>
<td>8</td>
<td>921</td>
<td></td>
<td></td>
<td>Spring within Iowa</td>
<td></td>
</tr>
<tr>
<td>TZW3 Fischer</td>
<td>6835787</td>
<td></td>
<td>TZW3</td>
<td>28.037890</td>
<td>1111</td>
<td></td>
<td>Middle Trinity</td>
<td>Lower Hawes</td>
<td>575</td>
<td>transducer</td>
<td>TW3:</td>
<td>17-Apr-18</td>
<td>122.00</td>
<td>810.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronsback</td>
<td>Watson 2013</td>
<td>38.04835</td>
<td></td>
<td>09.210831</td>
<td>1105.230756</td>
<td>Middle Trinity</td>
<td>Collared and Dug</td>
<td>online</td>
<td>HRSW</td>
<td>20-Apr-18</td>
<td>251.65</td>
<td>8.42</td>
<td>575.63476</td>
<td>online</td>
<td>232.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shady Church</td>
<td>5755481</td>
<td></td>
<td>BSEACD</td>
<td>38.196810</td>
<td>1136.7</td>
<td>1136.073</td>
<td>Middle Trinity</td>
<td>UT</td>
<td>14-Apr-18</td>
<td>8</td>
<td>8</td>
<td>578</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shady Tree</td>
<td>Watson 2013</td>
<td>38.025853</td>
<td></td>
<td>09.218065</td>
<td>1008.515756</td>
<td>Middle Trinity</td>
<td>Core Complect</td>
<td>UT</td>
<td>11-Apr-18</td>
<td>64.75</td>
<td>8.47</td>
<td>575.62576</td>
<td>online</td>
<td>232.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park Spring</td>
<td>Watson 2013</td>
<td>38.013067</td>
<td></td>
<td>09.222708</td>
<td>950</td>
<td>987.201</td>
<td>Middle Trinity</td>
<td>Core Complect</td>
<td>UT</td>
<td>14-Apr-18</td>
<td>8</td>
<td>8</td>
<td>578</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle Trinity</td>
<td>Watson 2013</td>
<td>38.04835</td>
<td></td>
<td>09.222708</td>
<td>950</td>
<td>987.201</td>
<td>Middle Trinity</td>
<td>Core Complect</td>
<td>UT</td>
<td>13-Apr-18</td>
<td>11</td>
<td>8</td>
<td>575</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little Park Spring</td>
<td>Watson 2013</td>
<td>38.013067</td>
<td></td>
<td>09.222708</td>
<td>950</td>
<td>987.201</td>
<td>Middle Trinity</td>
<td>Core Complect</td>
<td>UT</td>
<td>13-Apr-18</td>
<td>11</td>
<td>8</td>
<td>575</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pope</td>
<td>Watson 2013</td>
<td>38.013067</td>
<td></td>
<td>09.222708</td>
<td>950</td>
<td>987.201</td>
<td>Middle Trinity</td>
<td>Core Complect</td>
<td>UT</td>
<td>07-Apr-18</td>
<td>54.9</td>
<td>8.79</td>
<td>575.619005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slgton</td>
<td>Watson 2013</td>
<td>38.196810</td>
<td>TZW3</td>
<td>1083.00005</td>
<td>1083.00005</td>
<td>Middle Trinity</td>
<td>Core Complect</td>
<td>UT</td>
<td>19-Apr-18</td>
<td>161.23</td>
<td>1.21</td>
<td>578.891</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ponderosa Falls State Park</td>
<td>5717082</td>
<td></td>
<td>BSEACD</td>
<td>38.203000</td>
<td>1177</td>
<td></td>
<td>Middle Trinity</td>
<td>RU</td>
<td>19-Apr-18</td>
<td>108.12</td>
<td>1.8</td>
<td>576.563</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randy Burton</td>
<td>5754843</td>
<td></td>
<td>BSEACD</td>
<td>38.195000</td>
<td>1142</td>
<td></td>
<td>Middle Trinity</td>
<td>RU</td>
<td>10-Mar-08</td>
<td>161.3</td>
<td>1.4</td>
<td>576.631</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hall Well #4 (Whitehouse)</td>
<td>57425</td>
<td></td>
<td>HSEACD</td>
<td>38.014109</td>
<td>1176.215</td>
<td></td>
<td>Middle Trinity</td>
<td>online</td>
<td>TW</td>
<td>14-Apr-18</td>
<td>80.69</td>
<td>8.2</td>
<td>575.525</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stude 033-50 Top Solar</td>
<td>Watson 2013</td>
<td>38.073285</td>
<td></td>
<td>1221.02005</td>
<td>1221.02005</td>
<td>Middle Trinity</td>
<td>Core Complect</td>
<td>Mike Stude</td>
<td>HESMC</td>
<td>25-Apr-18</td>
<td>116.08</td>
<td>1.9</td>
<td>575.214004</td>
<td>online</td>
<td>111.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stude 04-Brisas Wall</td>
<td>Watson 2013</td>
<td>38.024889</td>
<td></td>
<td>1071.248563</td>
<td>1071.248563</td>
<td>Middle Trinity</td>
<td>Core Complect</td>
<td>Mike Stude</td>
<td>HESMC</td>
<td>25-Apr-18</td>
<td>76.7</td>
<td>1.7</td>
<td>575.214004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stude 03-Crest House</td>
<td>Watson 2013</td>
<td>38.034359</td>
<td></td>
<td>1204.00005</td>
<td>1204.00005</td>
<td>Middle Trinity</td>
<td>Core Complect</td>
<td>Mike Stude</td>
<td>HESMC</td>
<td>25-Apr-18</td>
<td>86.1</td>
<td>1.5</td>
<td>575.452007</td>
<td>online</td>
<td>88.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zillafelch</td>
<td>Watson 2013</td>
<td>28.970600</td>
<td></td>
<td>1191.28119</td>
<td>1191.28119</td>
<td>Middle Trinity</td>
<td>UT</td>
<td>19-Apr-18</td>
<td>218.07</td>
<td>1.8</td>
<td>575.806139</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stude Watahala #1</td>
<td>BSEACD</td>
<td>38.015701</td>
<td></td>
<td>09.235890</td>
<td>1003</td>
<td></td>
<td>Middle Trinity</td>
<td>Mike Stude</td>
<td>HESMC</td>
<td>25-Apr-18</td>
<td>93.23</td>
<td>8</td>
<td>575.771</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stude Watahala #2</td>
<td>Watson 2013</td>
<td>38.015701</td>
<td></td>
<td>09.247750</td>
<td>1003.00006</td>
<td>Middle Trinity</td>
<td>Mike Stude</td>
<td>HESMC</td>
<td>25-Apr-18</td>
<td>93.33</td>
<td>8</td>
<td>566.315006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ponderosa</td>
<td>Watson 2013</td>
<td>38.314187</td>
<td></td>
<td>08.202866</td>
<td>900</td>
<td></td>
<td>N/A</td>
<td>900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>SHN</td>
<td>Other_ID</td>
<td>Source</td>
<td>Diluent</td>
<td>Dilution</td>
<td>Surface_Elevation</td>
<td>Surface_filter_sand</td>
<td>Aquifer</td>
<td>Otter manufactured</td>
<td>Well Depth</td>
<td>Equipment</td>
<td>Staff</td>
<td>2018_Date</td>
<td>2018_IFTW</td>
<td>MP</td>
<td>2008_IF</td>
<td>Comment_</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>----------</td>
<td>-----------------</td>
<td>---------</td>
<td>-----------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>-----------</td>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
<td>----</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Name_1</td>
<td>SHN_1</td>
<td>Other_ID_1</td>
<td>Source_1</td>
<td>Diluent_1</td>
<td>Dilution_1</td>
<td>Surface_Elevation_1</td>
<td>Surface_filter_sand_1</td>
<td>Aquifer_1</td>
<td>Otter manufactured_1</td>
<td>Well Depth_1</td>
<td>Equipment_1</td>
<td>Staff_1</td>
<td>2018_Date_1</td>
<td>2018_IFTW_1</td>
<td>MP_1</td>
<td>2008_IF_1</td>
<td>Comment_1_1</td>
</tr>
<tr>
<td>Name_2</td>
<td>SHN_2</td>
<td>Other_ID_2</td>
<td>Source_2</td>
<td>Diluent_2</td>
<td>Dilution_2</td>
<td>Surface_Elevation_2</td>
<td>Surface_filter_sand_2</td>
<td>Aquifer_2</td>
<td>Otter manufactured_2</td>
<td>Well Depth_2</td>
<td>Equipment_2</td>
<td>Staff_2</td>
<td>2018_Date_2</td>
<td>2018_IFTW_2</td>
<td>MP_2</td>
<td>2008_IF_2</td>
<td>Comment_2_2</td>
</tr>
<tr>
<td>Name_3</td>
<td>SHN_3</td>
<td>Other_ID_3</td>
<td>Source_3</td>
<td>Diluent_3</td>
<td>Dilution_3</td>
<td>Surface_Elevation_3</td>
<td>Surface_filter_sand_3</td>
<td>Aquifer_3</td>
<td>Otter manufactured_3</td>
<td>Well Depth_3</td>
<td>Equipment_3</td>
<td>Staff_3</td>
<td>2018_Date_3</td>
<td>2018_IFTW_3</td>
<td>MP_3</td>
<td>2008_IF_3</td>
<td>Comment_3_3</td>
</tr>
<tr>
<td>Name_4</td>
<td>SHN_4</td>
<td>Other_ID_4</td>
<td>Source_4</td>
<td>Diluent_4</td>
<td>Dilution_4</td>
<td>Surface_Elevation_4</td>
<td>Surface_filter_sand_4</td>
<td>Aquifer_4</td>
<td>Otter manufactured_4</td>
<td>Well Depth_4</td>
<td>Equipment_4</td>
<td>Staff_4</td>
<td>2018_Date_4</td>
<td>2018_IFTW_4</td>
<td>MP_4</td>
<td>2008_IF_4</td>
<td>Comment_4_4</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

Notes:
- **Surface_Elevation**: Surface elevation in feet above mean sea level.
- **Surface_filter_sand**: Surface filter sand type.
- **Aquifer**: Aquifer type.
- **Otter manufactured**: Otter manufactured type.
- **Well Depth**: Well depth in feet.
- **Equipment**: Equipment type.
- **Staff**: Staff name.
- **2018_Date**: Date when the well was drilled.
- **2018_IFTW**: IFTW (Intagration Factor) in 2018.
- **MP**: MP (Maximum Pressure) in psi.
- **Comment**: Notes or comments about the well.
- **Notes**: Additional notes.
<table>
<thead>
<tr>
<th>Name</th>
<th>SHN</th>
<th>Other_ID</th>
<th>Source</th>
<th>Dilution</th>
<th>Surface_Elevation</th>
<th>Surface_filter_type</th>
<th>Aquifer</th>
<th>Owner</th>
<th>Well Depth</th>
<th>Equipment</th>
<th>Staff</th>
<th>2018_State</th>
<th>2018_LTWF</th>
<th>MP</th>
<th>2018_WL_Elev</th>
<th>Comment_</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Blanco River Wall</td>
<td>5761215</td>
<td>BPGCD</td>
<td>38.094483</td>
<td>-98.652239</td>
<td>1321</td>
<td>Middletown</td>
<td>RF</td>
<td>18-Age-18</td>
<td>129.5</td>
<td></td>
<td>105</td>
<td>310</td>
<td>9.8</td>
<td>4</td>
<td>1253.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rose Wilco Wells</td>
<td>5761207</td>
<td>BPGCD</td>
<td>38.088728</td>
<td>-98.648411</td>
<td>1423</td>
<td>Middletown</td>
<td>RF</td>
<td>18-Age-17</td>
<td>91.28</td>
<td>1</td>
<td>1332.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranhberger Ranch</td>
<td>575098A</td>
<td>BPGCD—2019</td>
<td>36.240083</td>
<td>-98.690803</td>
<td>1005</td>
<td>Middletown</td>
<td>RF</td>
<td>10-Age-09</td>
<td>204.82</td>
<td>8.2</td>
<td>1380.38</td>
<td>Main Ranch Horse Well, unused</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Five Black North Parkes Wall</td>
<td>576117C</td>
<td>BPGCD</td>
<td>38.068649</td>
<td>-98.440000</td>
<td>1090</td>
<td>Middletown</td>
<td>RF</td>
<td>30-Age-18</td>
<td>125.7</td>
<td>2.2</td>
<td>1566.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edge Falls Spring 4</td>
<td>6804108</td>
<td>USGS Springs DB</td>
<td>28.918056</td>
<td>-98.350163</td>
<td>1093</td>
<td>210LRLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1093</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kessinfield VFD</td>
<td>6804113</td>
<td>CGGCD</td>
<td>28.966041</td>
<td>-98.523309</td>
<td>1336.42</td>
<td>Middletown</td>
<td>RF</td>
<td>26-Mar-14</td>
<td>193</td>
<td>1234.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RJ Sulmawater</td>
<td>575248J</td>
<td>BPGCD—2009</td>
<td>36.281139</td>
<td>-98.524222</td>
<td>1545</td>
<td>Middletown</td>
<td>RF</td>
<td>26-Feb-08</td>
<td>102.76</td>
<td>2</td>
<td>1385.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twister Kessinfield</td>
<td>6804112</td>
<td>TWDR</td>
<td>28.976277</td>
<td>-98.525277</td>
<td>1367</td>
<td>Middletown (Core Creek)</td>
<td>330</td>
<td>transducer</td>
<td>TW365</td>
<td>17-Age-18</td>
<td>128.76</td>
<td>1219.22</td>
<td></td>
<td>https://waterdatafortexas.org/groundwater/well/6804312</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKLS Estates Trust</td>
<td>6804112</td>
<td>CGGCD</td>
<td>28.976276</td>
<td>-98.525276</td>
<td>1373.17</td>
<td>Middletown</td>
<td>RF</td>
<td>20-Age-18</td>
<td>128.37</td>
<td>1243.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhinos</td>
<td>5750969</td>
<td>BSEACD</td>
<td>36.077053</td>
<td>-98.524208</td>
<td>1402</td>
<td>Middletown (Core Creek)</td>
<td>420</td>
<td>elise</td>
<td>BSMOG</td>
<td>25-Age-18</td>
<td>45.4</td>
<td>8.8</td>
<td>1437.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB-00-08-007</td>
<td>6804107</td>
<td>USGS Springs DB</td>
<td>28.944444</td>
<td>-98.528011</td>
<td>1205</td>
<td>210LRLS</td>
<td>RF</td>
<td>1205</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-000303</td>
<td>BSEACD</td>
<td>36.213333</td>
<td>-98.603139</td>
<td>Middletown—Henson</td>
<td>FT</td>
<td>17-Age-18</td>
<td>1409.1</td>
<td></td>
</tr>
<tr>
<td>R-000310</td>
<td>BSEACD</td>
<td>36.213333</td>
<td>-98.603139</td>
<td>Middletown—Henson</td>
<td>FT</td>
<td>17-Age-18</td>
<td>1388.1</td>
<td></td>
</tr>
<tr>
<td>Hala Haven</td>
<td>BSEACD</td>
<td>36.116512</td>
<td>-98.638066</td>
<td>1040</td>
<td>Middletown^2</td>
<td>Chris Hale</td>
<td>elise</td>
<td>BSMOG</td>
<td>25-Age-18</td>
<td>316.7</td>
<td>8.7</td>
<td>1361</td>
<td>scale:109</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB-00-03-006</td>
<td>6803068</td>
<td>USGS Springs DB</td>
<td>28.873722</td>
<td>-98.643167</td>
<td>1200</td>
<td>210LRLS</td>
<td>RF</td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-03006</td>
<td>BSEACD</td>
<td>36.208780</td>
<td>-98.702111</td>
<td>Middletown—Henson</td>
<td>FT</td>
<td>17-Age-18</td>
<td>1746.4</td>
<td></td>
</tr>
<tr>
<td>R-03153</td>
<td>BSEACD</td>
<td>36.199841</td>
<td>-98.701139</td>
<td>Middletown—Henson</td>
<td>FT</td>
<td>17-Age-18</td>
<td>1512.6</td>
<td></td>
</tr>
<tr>
<td>Naintechine VFD</td>
<td>6803109</td>
<td>CGGCD</td>
<td>28.975556</td>
<td>-98.721111</td>
<td>1294.54</td>
<td>Middletown</td>
<td>RF</td>
<td>20-Mar-18</td>
<td>43.75</td>
<td>1259.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-030208</td>
<td>BSEACD</td>
<td>36.162555</td>
<td>-98.760000</td>
<td>Middletown—Henson</td>
<td>FT</td>
<td>17-Age-18</td>
<td>1477.8</td>
<td></td>
</tr>
<tr>
<td>R-030107</td>
<td>BSEACD</td>
<td>36.105222</td>
<td>-98.829444</td>
<td>Middletown—Henson</td>
<td>FT</td>
<td>13-Age-18</td>
<td>1644.7</td>
<td></td>
</tr>
<tr>
<td>R-080011</td>
<td>BSEACD</td>
<td>36.217778</td>
<td>-98.817399</td>
<td>Middletown—Henson</td>
<td>FT</td>
<td>12-Age-18</td>
<td>1621.6</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>SHN</td>
<td>Other_ID</td>
<td>Source</td>
<td>B Heller</td>
<td>Drilling</td>
<td>Surface_Elevation</td>
<td>Surface_Elev_new</td>
<td>Aquifer</td>
<td>Owner</td>
<td>Well_Depth</td>
<td>Equipment</td>
<td>Staff</td>
<td>2018_Date</td>
<td>2018_DTW</td>
<td>MP</td>
<td>2018_WL_Elev</td>
<td>Comment_</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>----------</td>
<td>----------------</td>
<td>----------</td>
<td>----------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>-------</td>
<td>------------</td>
<td>-----------</td>
<td>------</td>
<td>-----------</td>
<td>----------</td>
<td>----</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>ER-00051</td>
<td>HCUWCD</td>
<td>38-104933</td>
<td>58-832778</td>
<td>MHW-T</td>
<td>PT</td>
<td>12-Age-18</td>
<td>3665.2</td>
<td></td>
</tr>
<tr>
<td>R-00076</td>
<td>HCUWCD</td>
<td>38-260851</td>
<td>58-832867</td>
<td>MHW-T</td>
<td>PT</td>
<td>12-Age-18</td>
<td>1616.1</td>
<td></td>
</tr>
<tr>
<td>Gl-00159</td>
<td>HCUWCD</td>
<td>38-201697</td>
<td>58-837778</td>
<td>MHW-T</td>
<td>PT</td>
<td>16-Age-18</td>
<td>1622.2</td>
<td></td>
</tr>
<tr>
<td>Gl-00081</td>
<td>HCUWCD</td>
<td>38-249789</td>
<td>58-838107</td>
<td>MHW-T</td>
<td>PT</td>
<td>16-Age-18</td>
<td>1604.1</td>
<td></td>
</tr>
<tr>
<td>R-00083</td>
<td>HCUWCD</td>
<td>38-521841</td>
<td>58-815389</td>
<td>MHW-T</td>
<td>PT</td>
<td>12-Age-18</td>
<td>1649.2</td>
<td></td>
</tr>
<tr>
<td>David Langford</td>
<td></td>
</tr>
<tr>
<td>ER-00780</td>
<td>HCUWCD</td>
<td>38-259659</td>
<td>58-857278</td>
<td>MHW-T</td>
<td>PT</td>
<td>10-Age-18</td>
<td>1607.6</td>
<td></td>
</tr>
<tr>
<td>R-01164</td>
<td>HCUWCD</td>
<td>38-100831</td>
<td>58-800006</td>
<td>MHW-T</td>
<td>PT</td>
<td>10-Age-18</td>
<td>1584.7</td>
<td></td>
</tr>
<tr>
<td>R-00083</td>
<td>HCUWCD</td>
<td>38-244139</td>
<td>58-878044</td>
<td>MHW-T</td>
<td>PT</td>
<td>10-Age-18</td>
<td>1648.6</td>
<td></td>
</tr>
<tr>
<td>Gl-00864</td>
<td>HCUWCD</td>
<td>38-213617</td>
<td>58-874972</td>
<td>MHW-T</td>
<td>PT</td>
<td>10-Age-18</td>
<td>1546.8</td>
<td></td>
</tr>
<tr>
<td>R-00064</td>
<td>HCUWCD</td>
<td>38-182361</td>
<td>58-802417</td>
<td>MHW-T</td>
<td>PT</td>
<td>10-Age-18</td>
<td>1587.6</td>
<td></td>
</tr>
<tr>
<td>Comfort TWDB</td>
<td>6815154</td>
<td>7-018</td>
<td>HCUWCD</td>
<td>28-971041</td>
<td>58-804178</td>
<td>1305.58</td>
<td>MHW-T</td>
<td>315</td>
<td>28-Mar-18</td>
<td>172.45</td>
<td>1612.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER-00163</td>
<td>HCUWCD</td>
<td>38-280804</td>
<td>58-804006</td>
<td>MHW-T</td>
<td>PT</td>
<td>10-Age-18</td>
<td>1712.5</td>
<td></td>
</tr>
<tr>
<td>R-01975</td>
<td>HCUWCD</td>
<td>38-251147</td>
<td>58-828708</td>
<td>MHW-T</td>
<td>PT</td>
<td>10-Age-18</td>
<td>1664.1</td>
<td></td>
</tr>
<tr>
<td>ER-00899</td>
<td>HCUWCD</td>
<td>38-260883</td>
<td>58-814528</td>
<td>MHW-T</td>
<td>PT</td>
<td>10-Age-18</td>
<td>1715.6</td>
<td></td>
</tr>
<tr>
<td>Er-00167</td>
<td>HCUWCD</td>
<td>38-275328</td>
<td>58-811167</td>
<td>MHW-T</td>
<td>PT</td>
<td>10-Age-18</td>
<td>1670.7</td>
<td></td>
</tr>
<tr>
<td>R-01205</td>
<td>HCUWCD</td>
<td>38-268556</td>
<td>58-812222</td>
<td>MHW-T</td>
<td>PT</td>
<td>10-Age-18</td>
<td>1726.1</td>
<td></td>
</tr>
<tr>
<td>R-02284</td>
<td>HCUWCD</td>
<td>38-116084</td>
<td>58-827593</td>
<td>MHW-T</td>
<td>PT</td>
<td>10-Age-18</td>
<td>1734.9</td>
<td></td>
</tr>
<tr>
<td>R-00073</td>
<td>HCUWCD</td>
<td>38-264095</td>
<td>58-835569</td>
<td>MHW-T</td>
<td>PT</td>
<td>10-Age-18</td>
<td>1669</td>
<td></td>
</tr>
<tr>
<td>Er-00777</td>
<td>HCUWCD</td>
<td>38-132085</td>
<td>58-801639</td>
<td>MHW-T</td>
<td>PT</td>
<td>10-Age-18</td>
<td>1620.9</td>
<td></td>
</tr>
<tr>
<td>Er-00207</td>
<td>HCUWCD</td>
<td>38-325353</td>
<td>58-807667</td>
<td>MHW-T</td>
<td>PT</td>
<td>10-Age-18</td>
<td>1782.2</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>SHN</td>
<td>Other_ID</td>
<td>Source</td>
<td>Ddlat</td>
<td>Ddlon</td>
<td>Surface_Elevation</td>
<td>Aquifer</td>
<td>Owner</td>
<td>Well_Depth</td>
<td>Equipment</td>
<td>Staff</td>
<td>2018_Date</td>
<td>2018_DTW</td>
<td>MP</td>
<td>2018_WL_Elev</td>
<td>Comment_</td>
<td>Notes</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------------------</td>
<td>----------</td>
<td>-------</td>
<td>------------</td>
<td>-----------</td>
<td>------</td>
<td>-----------</td>
<td>---------</td>
<td>----</td>
<td>--------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>R-00147</td>
<td>HCUWCD</td>
<td>38.194111</td>
<td>99.180800</td>
<td>Middle Trinity--Hensel</td>
<td>FT</td>
<td>10-Apr-18</td>
<td>1677.5</td>
<td></td>
</tr>
<tr>
<td>R-00015</td>
<td>HCUWCD</td>
<td>38.146011</td>
<td>99.124461</td>
<td>Middle Trinity--Hensel</td>
<td>FT</td>
<td>10-Apr-18</td>
<td>1651.6</td>
<td></td>
</tr>
<tr>
<td>R-00085</td>
<td>HCUWCD</td>
<td>38.151605</td>
<td>99.120172</td>
<td>Middle Trinity--Hensel</td>
<td>FT</td>
<td>10-Apr-18</td>
<td>1643.6</td>
<td></td>
</tr>
<tr>
<td>IR-00045</td>
<td>HCUWCD</td>
<td>38.205041</td>
<td>99.278439</td>
<td>Middle Trinity--Hensel</td>
<td>FT</td>
<td>10-Apr-18</td>
<td>1707.6</td>
<td></td>
</tr>
<tr>
<td>R-00364</td>
<td>HCUWCD</td>
<td>38.205041</td>
<td>99.278439</td>
<td>Middle Trinity--Hensel</td>
<td>FT</td>
<td>10-Apr-18</td>
<td>1683.5</td>
<td></td>
</tr>
<tr>
<td>R-00209</td>
<td>HCUWCD</td>
<td>38.251964</td>
<td>99.224867</td>
<td>Middle Trinity--Hensel</td>
<td>FT</td>
<td>10-Apr-18</td>
<td>1705</td>
<td></td>
</tr>
<tr>
<td>PM-00005</td>
<td>HCUWCD</td>
<td>38.214333</td>
<td>99.138722</td>
<td>Middle Trinity--Hensel</td>
<td>FT</td>
<td>10-Apr-18</td>
<td>1704.6</td>
<td></td>
</tr>
<tr>
<td>R-000765</td>
<td>HCUWCD</td>
<td>38.261111</td>
<td>99.149167</td>
<td>Middle Trinity--Hensel</td>
<td>FT</td>
<td>10-Apr-18</td>
<td>1711.9</td>
<td></td>
</tr>
<tr>
<td>R-00173</td>
<td>HCUWCD</td>
<td>38.164133</td>
<td>99.178433</td>
<td>Middle Trinity--Hensel</td>
<td>FT</td>
<td>10-Apr-18</td>
<td>1689.9</td>
<td></td>
</tr>
<tr>
<td>R-00171</td>
<td>HCUWCD</td>
<td>38.148278</td>
<td>99.173489</td>
<td>Middle Trinity--Hensel</td>
<td>FT</td>
<td>10-Apr-18</td>
<td>1664.7</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 3: 2009 Middle Trinity Potentiometric Data (from Hunt et al., 2010).

<table>
<thead>
<tr>
<th>SWN</th>
<th>DDLong</th>
<th>DDLat</th>
<th>Date</th>
<th>LSD_Elev</th>
<th>Meas_WL</th>
<th>MPH</th>
<th>WL_Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>6805209</td>
<td>-98.427944</td>
<td>29.991278</td>
<td>2/18/2009</td>
<td>1390</td>
<td>128.90</td>
<td>2.00</td>
<td>1263.10</td>
</tr>
<tr>
<td>57469SH</td>
<td>-98.279361</td>
<td>30.259417</td>
<td>3/9/2009</td>
<td>1078</td>
<td>82.14</td>
<td>1.50</td>
<td>997.36</td>
</tr>
<tr>
<td>57529D1</td>
<td>-98.512694</td>
<td>30.130861</td>
<td>2/26/2009</td>
<td>1518</td>
<td>145.31</td>
<td>2.00</td>
<td>1374.69</td>
</tr>
<tr>
<td>57549GG</td>
<td>-98.269722</td>
<td>30.141806</td>
<td>3/7/2009</td>
<td>1548</td>
<td>499.45</td>
<td>1.90</td>
<td>1050.45</td>
</tr>
<tr>
<td>57603HH</td>
<td>-98.534111</td>
<td>30.094806</td>
<td>2/26/2009</td>
<td>1512</td>
<td>93.79</td>
<td>1.00</td>
<td>1419.21</td>
</tr>
<tr>
<td>57617RH</td>
<td>-98.484570</td>
<td>30.027960</td>
<td>2/22/2009</td>
<td>1502</td>
<td>72.30</td>
<td>1.00</td>
<td>1430.70</td>
</tr>
<tr>
<td>57626ER</td>
<td>-98.288778</td>
<td>30.079250</td>
<td>3/6/2009</td>
<td>1253</td>
<td>225.00</td>
<td>1.50</td>
<td>1029.50</td>
</tr>
<tr>
<td>6802508</td>
<td>-98.803889</td>
<td>29.950000</td>
<td>3/17/2009</td>
<td>1340</td>
<td>91.70</td>
<td>-1.67</td>
<td>1249.97</td>
</tr>
<tr>
<td>6802609</td>
<td>-98.788611</td>
<td>29.930000</td>
<td>3/17/2009</td>
<td>1355</td>
<td>121.25</td>
<td>-1.25</td>
<td>1235.00</td>
</tr>
<tr>
<td>6803804</td>
<td>-98.709444</td>
<td>29.890833</td>
<td>3/17/2009</td>
<td>1431</td>
<td>200.10</td>
<td>-1.50</td>
<td>1232.40</td>
</tr>
<tr>
<td>6804705</td>
<td>-98.620556</td>
<td>29.896389</td>
<td>3/17/2009</td>
<td>1280</td>
<td>179.00</td>
<td>-1.58</td>
<td>1102.58</td>
</tr>
<tr>
<td>6804809</td>
<td>-98.557222</td>
<td>29.889167</td>
<td>3/17/2009</td>
<td>1121</td>
<td>73.40</td>
<td>-1.50</td>
<td>1049.10</td>
</tr>
<tr>
<td>6811206</td>
<td>-98.598333</td>
<td>29.854444</td>
<td>3/17/2009</td>
<td>1234</td>
<td>102.20</td>
<td>-0.83</td>
<td>1132.63</td>
</tr>
<tr>
<td>#79167</td>
<td>-98.836389</td>
<td>29.920278</td>
<td>3/17/2009</td>
<td>1606</td>
<td>346.30</td>
<td>-2.67</td>
<td>1262.37</td>
</tr>
<tr>
<td>5663305</td>
<td>-99.148222</td>
<td>30.099139</td>
<td>3/30/2009</td>
<td>1785</td>
<td>250.05</td>
<td>0.00</td>
<td>1534.95</td>
</tr>
<tr>
<td>5664711</td>
<td>-99.112667</td>
<td>30.009333</td>
<td>3/26/2009</td>
<td>1576</td>
<td>198.60</td>
<td>0.00</td>
<td>1377.40</td>
</tr>
<tr>
<td>575703</td>
<td>-98.972778</td>
<td>30.019444</td>
<td>3/30/2009</td>
<td>1565</td>
<td>124.90</td>
<td>0.00</td>
<td>1440.10</td>
</tr>
<tr>
<td>6801703</td>
<td>-98.972917</td>
<td>29.906944</td>
<td>3/27/2009</td>
<td>1525</td>
<td>209.30</td>
<td>0.00</td>
<td>1315.70</td>
</tr>
<tr>
<td>6908305</td>
<td>-99.024028</td>
<td>29.988389</td>
<td>3/26/2009</td>
<td>1662</td>
<td>279.00</td>
<td>0.00</td>
<td>1383.00</td>
</tr>
<tr>
<td>6908624</td>
<td>-99.024583</td>
<td>29.936778</td>
<td>3/27/2009</td>
<td>1525</td>
<td>182.80</td>
<td>0.00</td>
<td>1342.20</td>
</tr>
<tr>
<td>57559</td>
<td>-98.137199</td>
<td>30.130867</td>
<td>2/13/2009</td>
<td>1240</td>
<td>255.25</td>
<td>1.08</td>
<td>985.34</td>
</tr>
<tr>
<td>5763903, G1050039B</td>
<td>-98.156196</td>
<td>30.039252</td>
<td>2/13/2009</td>
<td>1033</td>
<td>121.00</td>
<td>2.57</td>
<td>914.53</td>
</tr>
<tr>
<td>Holbrook</td>
<td>-98.105892</td>
<td>30.043739</td>
<td>2/19/2009</td>
<td>1058</td>
<td>149.90</td>
<td>1.88</td>
<td>909.75</td>
</tr>
<tr>
<td>Warner</td>
<td>-98.138816</td>
<td>30.057818</td>
<td>2/18/2009</td>
<td>1136</td>
<td>219.58</td>
<td>0.79</td>
<td>917.19</td>
</tr>
<tr>
<td>6815116</td>
<td>-98.213056</td>
<td>29.848611</td>
<td>2/14/2009</td>
<td>1010</td>
<td>138.26</td>
<td>0.00</td>
<td>871.74</td>
</tr>
<tr>
<td>6821213</td>
<td>-98.422221</td>
<td>29.719443</td>
<td>2/15/2009</td>
<td>1100</td>
<td>301.00</td>
<td>0.00</td>
<td>799.00</td>
</tr>
<tr>
<td>6821902</td>
<td>-98.385277</td>
<td>29.662777</td>
<td>3/15/2009</td>
<td>968</td>
<td>296.86</td>
<td>0.00</td>
<td>671.14</td>
</tr>
</tbody>
</table>
Appendix 4: Middle Trinity Springs (from TWDB groundwater database).

<table>
<thead>
<tr>
<th>Name</th>
<th>site_no</th>
<th>state_well</th>
<th>dec_lat_va</th>
<th>dec_long_v</th>
<th>alt_va</th>
<th>aquifer_cd</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swede Creek Springs</td>
<td>29515098350901</td>
<td>6812101</td>
<td>29.864722</td>
<td>-98.585833</td>
<td>1140</td>
<td>218GLRSL</td>
<td></td>
</tr>
<tr>
<td>Sultenfuss Spring</td>
<td>295203098344801</td>
<td>6812201</td>
<td>29.867500</td>
<td>-98.580000</td>
<td>1185</td>
<td>218GLRSL</td>
<td></td>
</tr>
<tr>
<td>Cave Without a Name</td>
<td>295311098370301</td>
<td>6804701</td>
<td>29.886389</td>
<td>-98.617500</td>
<td>1130</td>
<td>218GLRSL</td>
<td></td>
</tr>
<tr>
<td>RB-68-02-605</td>
<td>295552098465601</td>
<td>6802605</td>
<td>29.931111</td>
<td>-98.782222</td>
<td>1315</td>
<td>218GLRSL</td>
<td></td>
</tr>
<tr>
<td>Buchanan Ranch Spring</td>
<td>300216098143701</td>
<td>5763704</td>
<td>30.037778</td>
<td>-98.243611</td>
<td>1132</td>
<td>218GLRSL</td>
<td></td>
</tr>
<tr>
<td>Cove Branch Creek Spring</td>
<td>300400098204801</td>
<td>5762403</td>
<td>30.066667</td>
<td>-98.346667</td>
<td>1260</td>
<td>218GLRSL</td>
<td></td>
</tr>
<tr>
<td>Cold Spring</td>
<td>300530098241101</td>
<td>5761304</td>
<td>30.091667</td>
<td>-98.403056</td>
<td>1280</td>
<td>218GLRSL</td>
<td></td>
</tr>
<tr>
<td>AZ-57-54-401</td>
<td>301137098200901</td>
<td>5754401</td>
<td>30.193611</td>
<td>-98.335833</td>
<td>1150</td>
<td>218GLRSL</td>
<td></td>
</tr>
<tr>
<td>Mill Seat Spring</td>
<td>301220098210901</td>
<td>5754402</td>
<td>30.205556</td>
<td>-98.352500</td>
<td>1160</td>
<td>218GLRSL</td>
<td></td>
</tr>
<tr>
<td>AZ-57-55-107</td>
<td>301438098145401</td>
<td>5755107</td>
<td>30.243889</td>
<td>-98.248333</td>
<td>1060</td>
<td>218GLRSL</td>
<td></td>
</tr>
<tr>
<td>Oak Spring</td>
<td>301500098240701</td>
<td>5753317</td>
<td>30.250000</td>
<td>-98.401944</td>
<td>1300</td>
<td>218GLRSL</td>
<td></td>
</tr>
<tr>
<td>Hammett's Spring</td>
<td>302029098083801</td>
<td>5747304</td>
<td>30.341389</td>
<td>-98.143889</td>
<td>805</td>
<td>218GLRSL</td>
<td>Well B-38 in 1957 Travis County report.</td>
</tr>
<tr>
<td>Santa Monica Springs</td>
<td>302036097532001</td>
<td>5841306</td>
<td>30.343333</td>
<td>-97.888889</td>
<td>480</td>
<td>218GLRSL</td>
<td>It is now beneath Lake Austin.</td>
</tr>
<tr>
<td>Hamilton Springs</td>
<td>302036098072801</td>
<td>5748105</td>
<td>30.343333</td>
<td>-98.124444</td>
<td>805</td>
<td>218GLRSL</td>
<td></td>
</tr>
<tr>
<td>AZ-57-45-303</td>
<td>302111098232201</td>
<td>5745303</td>
<td>30.353056</td>
<td>-98.389444</td>
<td>1270</td>
<td>218GLRSL</td>
<td></td>
</tr>
</tbody>
</table>