

Barton Springs Edwards Aquifer CONSERVATION DISTRICT

Purpose

To better understand the hydrogeological properties of and relationships between the geologic units that make up the Edwards, Upper and Middle Trinity Aquifers and to compare observed hydrologic properties of formations to generally accepted understanding of them and suggest nomenclature that best describes hydrogeologic properties of hydrostratigraphic units in the study area.

Introduction

- Permeabilities are a defining characteristic of aquifers.
- Detailed permeability data for distinct litho/hydrostratigraphic units in the Edwards and Trinity Aquifers has not been quantified in a single borehole.
- Hydrologic connection between hydrostratigraphic units in this area is not entirely understood and needs more thorough characterization to better manage water resources.
- Two Westbay multiport wells were used to measure hydrogeologic characteristics of rock units.

Location

Figures 1 and 2. Wells are located in the Barton Springs Segment of the Edwards Aquifer, within the Balcones Fault Zone. Both wells are about 15 miles south of Austin and 3.5 miles apart.

Figure 1

Hydrological and Geochemical Characteristics in the Edwards and Trinity Hydrostratigraphic Units Using Multiport Monitor Wells in the Balcones Fault Zone, Hays County, Central Texas Alan Andrews, Brian Hunt, Brian Smith

	Stratigraphy			neral /drostratigraphy	Hydrologic Function	ID thickness in feet	Lithology	Porosity/Permeability <u>Sc</u>		
Der	Buda				confining	40-50	Dense limestone	Low		
Upg	Del Ric	D	Co	onfining Units	CU	50-60	Blue-green to yellow-brown clay	Upper Confining Unit		
	Georget	town F			CU	40-60	Marly limestone; grnst	Low		
		uc	fer	Leached and Collapsed mbrs	Aquifer (AQ)	III 30-80	Crystalline limestone; mdst to wkst to milliolid grnst; chert; collapse breccia	High Low; vertical barrier		
	dn	erso n.	lint	Reg. Dense mbr	CU	IV 20-30	Argillaceous mudstone			
		ч Т	SAG	Grainstone mbr	AQ V 45-60 Milliolid grnst; mdst to wkst; chert		Low			
	Edwards (Ľ.	Edwards	Kirschberg mbr	AQ	VI 65-75	Crystalline limestone; chalky mudstone; chert	High Locally permeable		
		Kainer F		Dolomitic mbr	AQ	VII 110-150	Mudstone to grainstone; crystalline limestone; chert			
sno				Basal Nod- ular mbr	Karst AQ; VIII Shaly, fossiliferous, not karst CU 45-60 nodular limestone; mudstone		Low			
retace					Karst and fract AQ not karst CU	Interval A 30-120	Alt. mdst, wkst, and pkst local solution zones	permeable near Edwards contact, decreases with depth		
wer (Upper	CU; AQ assoc. Karst and fract	Interval B 120-150	Alt. mdst, clays, wkst and pkst	Low		
	Upper N Glen Ro	Aembe se		Trinity	AQ	Interval C 10-20 ft	Calcareous mud and vuggy mudstone	Moderate; breccia, and mol (boxwork) texture High in biostrome; lower 90 very low porosity Moderate breccia, and moldic (boxwork)		
	Limesto	one			AQ assoc. biostromes only	Interval D 135-180	Alt wkst, pkst, marl; thick biostromes locally			
					AQ	Interval E 7-10	Calcareous mud and vuggy mudstone			
	Lower N	/lembe			AQ in bioherms and evaporite beds, karst and fracture; CU elswhere	320-340	Lower Glen Rose (Clark, 2004): Alt mdst, wkst, pkst, and grnst; bioherms	Good porosity and perm. in bioherms; low porosity ar permeability elsewhere		
	Limesto	one		Middle Trinity	AQ in reefs	~250	Lower Glen Rose (Wierman et al., 2010) Alternating mdst, wkst, and grnst; lower and upper reef intervals	Fabric selective; Good porosity and permeability in reefs		
	Hensel				CU	2U 15-40 Mudstone, clay an		Low		
	Cow Cre	eek			AQ	~70	Grainstone, dolomitic toward base	High		
	Hamme		C	onfining Unit	CU	~40		low: permeable near top		

Methods

Two Westbay multiport wells were used to measure water levels, conduct rising/falling head and slug tests, and

Figure 4a.

Figures 4a-f. Tool used to open and close ports inside wells. Ports consist of a screened section of PVC coupling, which when moved up or Tables 1 and 2. List distribution of hydraulic conductidown, respectively open or close the casing to formavities in Ruby Ranch (left) and Antioch (right) multiport wells, tion water. based on rising/falling head tests and slug tests.

Figures 5a,b. Examples of underdamped and overdamped water level equilibration. Bouwer-Rice (Fig.5a) and Butler (5b) analytical solutions were used to calculate hydraulic conductivities at each port, based on water level response.

						Zone	Rising-falling K (ft/day)	Slug-in (ft/day)	K	Slug-out (ft/day)	к	Zone Thickness (ft)	Trans ft2/day
						21	0.3					35	10
	Rising-falling K	Slug	к	7one	Transmissivity	20	53					70	3700
Zone	(ft/dav)	(ft/dav)		Thickness (ft)	(ft2/dav)	19	5	8		6		30	140
14				136		18	3	3				25	84
13	65			72	13000	17	38			44		105	4000
12	2			34	460	16	29	80		19		70	2000
11	2			150	400 8300	15	29	105		161		75	2100
10	4			107	6300	14	8	10		3		45	370
10	0.09			197	50	13	4	2		6		40	160
9	0.005			97	4	12	0.2					85	
8	0.7			56	515	11	0.1					90	
7	26			68	21000	10	0.2					100	24
6	0.4	0.9		72	365	9	0.6	0.1				30	16
5		0.2		77		8	0.4					30	
4		37		27	38000	7	0.3					70	
3	26			26	27000	6	0.1	0.6				70	6
2	34			20	36000	5	0.202					40	8
1				41		4	6	7		7		30	170
Table 1						3	0.2					30	5
	-					2	1	1.5		2		25	26
						1	19	60				55	1060
						Table	2.						

Hydraulic conductivity values for the three hydrostratigraphic groupings observed are:

• Edwards Aquifer, values between 0.3 and 66 ft/day.

26 ft/day avg.

• Upper Trinity Aquitard, from 0.01 to 0.7 ft/day.

0.25 ft/day avg.

Middle Trinity Aquifer, from 0.2 to 37 ft/day.

13.6 ft/day avg.

Conclusions

 Observed hydraulic conductivities of the various formations that make up the Edwards Aquifer (Fig. 3) generally agree with those qualitatively assigned by previous studies.

- Upper-most units of the Upper Glen Rose exhibit high hydraulic conductivity and good quality water similar to units in the Edwards Aquifer.
- Most of the Upper Trinity "Aquifer" is best described as an aquitard and confining unit in this area, especially when comparing its hydraulic conductivities to those found in the Edwards and Middle Trinity Aquifers.

• Uppermost units of the Lower Member of the Glen Rose Limestone exhibit low hydraulic conductivity (<1 ft/d) and high TDS (2100 to 3200 mg/l), resembling values found in the Upper Trinity Aquitard.

• Differences in head, hydraulic conductivity, and geochemistry between hydrostratigraphic layers indicate that minimal vertical flow occurs between them.

• Small, T.A., Hanson J.A., Hauwert, N.M., 1996, Geologic Framework and Hydrogeologic

[•] Bouwer, H., 1989. The Bouwer and Rice slug test--an update, Ground Water, vol. 27, no. 3, pp. 304-309dwards-Trinity Aquifer System West-Central Texas

[•] Butler, J.J., Jr., 1998. The Design, Performance, and Analysis of Slug Tests, Lewis Publishers, New York, 252p. • Clark, A.K., 2004, Geologic framework and hydrogeologic characteristics of the Glen Rose limestone, Camp Stanley Storage Activity Bexar County, Texas

Characteristics of the Edwards Aquifer Outcrop (Barton Springs Segment), Northeastern Hays and Soutwestern Travis Counties, Texas • Wierman, D.A., Broun, A.S., Hunt, B.B, 2010, Hydrogeologic Atlas of the Hill Country Trinity Aquifer, Blanco, Hays, and Travis Counties, Central Texas