DROUGHT TRIGGER METHODOLOGY FOR THE BARTON SPRINGS SEGMENT OF THE EDWARDS AQUIFER, TRAVIS AND HAYS COUNTIES, TEXAS

Brian A. Smith, Ph.D., P.G.; Brian B. Hunt, P.G.; Kirk Holland, P.G.

ABSTRACT

Previous studies of the Barton Springs segment of the Edwards Aquifer have shown that at current pumping rates and a recurrence of drought-of-record conditions, flow from Barton Springs could cease for brief periods, and up to 20% of the water-supply wells could go dry. A drought trigger methodology (DTM) was devised to improve declarations of drought and to implement mandated conservation measures by ground-water users. These conservation measures are the primary means of protecting water levels and spring flow. Three criteria were established as the basis for developing a DTM: 1) that a drought stage declaration be triggered in sufficient time to achieve benefits of conservation measures; 2) that it will be representative of aquifer-wide conditions; and 3) that it be simple to implement. Principal components of the hydrologic cycle (recharge, storage, and discharge) were evaluated along with historical data such as rainfall, stream flow, water levels, and spring flow. The DTM that was developed uses flow from Barton Springs and water levels in the Lovelady monitor well to determine drought status of the aquifer. Water levels in the well are indicative of the amount of water in storage. The muted response to major recharge events suggests that the well is not well connected to the conduit system. Flow from Barton Springs responds quickly to minor and major recharge events. By using both the Lovelady well and flow from Barton Springs to signal a drought, it is likely that a serious drought can be recognized early enough that conservation measures can be implemented and continue long enough to minimize the impact of low water levels in wells on water supplies and to maintain adequate flow at Barton Springs that will be protective of the endangered species at the springs.

RESULTS

The DTM that was developed uses flow from Barton Springs and water levels in the Lovelady monitor well to determine drought status of the aquifer. Water levels in the well are indicative of the amount of water in storage. The muted response to major recharge events suggests that the well is not well connected to the conduit system. Flow from Barton Springs responds quickly to minor and major recharge events. By using both the Lovelady well and flow from Barton Springs to signal a drought, it is likely that a serious drought can be recognized early enough that conservation measures can be implemented and continue long enough to minimize the impact of low water levels in wells on water supplies and to maintain adequate flow at Barton Springs that will be protective of the endangered species at the springs.

CONCLUSIONS

- Either spring flow or water levels in Lovelady can trigger a drought, but to exit a drought stage, both spring flow and water level must be above their respective drought trigger value.
- Water Conservation Period
 - May 1 through September 30
 - Voluntary reduction in usage of 10%
- Alarm Stage Drought
 - Mandatory 20% reduction in usage
- Critical Stage Drought
 - Mandatory 30% reduction in usage

ACKNOWLEDGMENTS

- Drought Trigger Advisory Team
- Rule revision team and public hearings
- BSEAD Board of Directors

OBJECTIVE

Devise a new drought trigger methodology based on three main elements:
1) Representative of the entire aquifer;
2) Simple to implement;
3) Protective of spring flow and wells.

APPROACH

Principal components of the hydrologic cycle (rainfall, recharge, storage, and discharge) were evaluated:
- Evaluation based primarily upon historical data;
- Basic statistics and correlations;
- Multivariate (Principal Components) analysis;
- GAM model provides substantiation of drought duration and responses.

KEY COMPONENTS OF DROUGHT TRIGGER METHODOLOGY

- Either spring flow or water levels in Lovelady can trigger a drought, but to exit a drought stage, both spring flow and water level must be above their respective drought trigger value.
- Water Conservation Period
 - May 1 through September 30
 - Voluntary reduction in usage of 10%
- Alarm Stage Drought
 - Mandatory 20% reduction in usage
- Critical Stage Drought
 - Mandatory 30% reduction in usage

CONCLUSIONS

- Recharge is difficult to quantify, therefore storage and discharge are better indicators of drought.
- There are two primary components of flow in the aquifer: conduit flow and diffuse flow or storage that are well represented by Barton Springs and Lovelady monitor well.
- The DTM that was developed uses flow from Barton Springs and water levels in the Lovelady monitor well to determine drought status of the aquifer.

ACKNOWLEDGMENTS

- Drought Trigger Advisory Team
- Rule revision team and public hearings
- BSEAD Board of Directors